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Introduction

.
O CMOS vs. CCD:

25 LRERAERETHNE (HERO2) 2016-2025F0 EHRCMOSEBEBRBH s T HNE (HEEOE) 2016-2025FW
130 - Cell Security In-vehicle
120 - CMOS - CCD - A . phone - Surveillance - Electronics Others
e 10 -
90 - - 100 4
53 i
o - %0 1 13
70 | 80 A

60 - ' 164
1 VT B 1
50 55 9 995 L e

103
93
84
40 55 B840 60 1 T4
30 A .=J_-=-.| 63.3 50 4 &7 850
20 {1 KK ®4 ] 61
1 Ui B B
0 - 0T . .

2016 2017 2018 2019 2020 2021E 2022E 2023E 2024E  2025E 2016 2017 2018 2019 2020 2021E 2022E 2023E 2024E 2025E

Market size of CMOS and CCD CMOS application classification

CMOS cameras where rolling shutter commonly used are now wining the battle of
current camera market against to CCD cameras.

v Cheaper manufacturing (lower price)
v Allows on-chip processing

v" Makes HD video affordable
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Introduction

Mobile phone

i B0 659,

Camcorder Robot platform Drone

Self-driving car

The first trend: "small pixel" technology:

v The popularity of H.265 encoding technology, the gradual uptake of 5 megapixel 4K products, and the

rise of intelligent video needs such as face recognition and object recognition.
The number of pixel dots is increasing, the pixel size is shrinking, and the clarity continues to improve.

Future market demand for CMOS image sensors to support higher resolution and higher frame rate
output is increasingly urgent.
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u Rolling shutter mechanism

Unlike a global shutter camera capturing all pixels simultaneously
using a CCD sensor, pixels on the rolling shutter CMOS sensor plane
are exposed commonly from top to bottom in a row-by-row fashion
with a constant inter-row delay.

Rolling Shutter Global Shutter

Exposure of 2" Row Rolling shutter image Global shutter image
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Introduction

u Rolling shutter effect

> Create some unintended geometric distortions if you're filming fast-moving subjects or panning
your video camera across a scene, such as skew, wobble, etc.

> Common in footage from DSLRs and mobile phone cameras.

When the rolling shutter effect relevant for computer vision:

. 3D modeling from images;
. Visual SLAM;
. Video stabilization algorithms, Video panoramas, etc.;

. Any geometric measurement from images.
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> Release date: 2021.10

Sony A7M4 > Full-frame back-illuminated CMOS

T~ bilibii

4K, 25fps, Severe distortion

DJI Ronin 4D

> Release date: 2021.10
> Electronic Rolling Shutter
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€ Iphone X
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u Importance of rolling shutter effect removal

Corrected global shutter input

Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.
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u Importance of rolling shutter effect removal

Global shutter image 3D reconstruction result

Albl C, Kukelova Z, Larsson V, et al. From two rolling shutters to one global shutter. CVPR 2020.



Introduction
... a4

u Importance of rolling shutter effect removal

Latent global shutter image sequence Rolling shutter image

v' The rolling shutter images implicitly contain rich high framerate temporal dynamic observation information, i.e.,
camera motion information (temporally) and scene 3D information (spatially).

v It is beneficial to achieve high framerate video reconstruction and high quality 3D reconstruction in the framework
of temporal dynamic modeling and deep learning.

v' This is of great importance for practical applications such as computational photography, visual tracking, scene
understanding, image entertainment, novel view synthesis, video editing and compression.
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O Overview: Rolling shutter geometric problem and image processing

Rolling shutter im age
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Rolling Shutter Geometric Modeling and Optimization
I

Global shutter geometric model: Pinhole camera geometry

Is described by its optical center C and the Q.
The distance of the image plane from Cis the /, the focal length.

vV V V O

The relation between M the 3D coordinates of a scene point and m the coordinates of its
projection onto the image plane is described by the perspective projection.

/ :
Ty mo 8, -
Va P
C -
optical center f

focal length

Luca Magri, Federica Arrigoni. Inside Plato’s door: a tour in Multi-view Geometry. Tutorial at CVPR 2022.



Rolling Shutter Geometric Modeling and Optimization

u Global shutter geometric model: Pinhole camera geometry

Fix a Cartesian coordinate system {y,,,,y,} in the optical center, with y, perpendicular to the image plane.

By similar triangles, M = (X, Yy, Z,,) is mapped to pointm = (‘Z{—“,’j—’“)
M M
Xm = f Xuy/Z
M = (X4, Yo, Zy) = m = G Yin), where {ym A

M
' T

fYjz
i" > Yz

& B |

optical center mage plane f
focal length



Rolling Shutter Geometric Modeling and Optimization
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O Global shutter geometric model: A hierarchy of transformations

> According to Erlangen Program, due to Felix Klein (1872) geometry is the study of properties that
are invariant with respect to a certain group of transformations.

Projective H € GL(3) = {H € R3*3 det(H) # 0}
homographies

e.g., incidence, collineations, tangency

bt a=[5 ¢ pems |

e.g., ratio of length of parallel lines, parallelism, ratio of area

5=[S§ ﬂ ReR¥2 RTR =]
)

e.g., angle, ratio of lengths, ratio of areas

_[R t 2X2 pTR —
E_[O 1]eSE(Z) ReR2*2 RTR =]

e.g., length, angle, area . ‘

Luca Magri, Federica Arrigoni. Inside Plato’s door: a tour in Multi-view Geometry. Tutorial at CVPR 2022.



Rolling Shutter Geometric Modeling and Optimization
I

n Global shutter geometric model: Fundamental matrix & Essential matrix

Fundametal matrix:
the fundamental matrix F is the unique 3x3 matrix rank 2 homogeneous matrix which satisfy xZ Fx, = 0 for
all corresponding points x,. & x; in the two images

» The fundamental matrix can be thought as the generalization of the

0 (PH};#E) ideal point essential matrix in which the (inessential) assumptions on camera
. 0

calibration have been removed.

viewing ray through %, . . .
Given a pair of cameras, two relations hold:

xIFxp =0and pLlEp, =0

where p = K™ x.

- Combining these we get
e .X'EKT-_lEK_g Xp = 0

which implies
E = K'FK,
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n Global shutter geometric model: Fundamental matrix & Essential matrix

Two-view correspondences
and epipolar line

Geometric interpretation .
Uncalibrated view: the fundamental matrix

o . 8 points algorithm
0]
iy . 7 points algorithm
(2, y) (=",y) points alg
_ ) Calibrated view: the essential matrix
0 0 fu fa fa T . .
0 0 fio for [ Y ° 8 pOIntS algorlthm
(z yz' vy | fu fiz 0 0 fis z' | =0 . o . .
e 00 fully 5 points algorithm (idea)
_f31 f32 f13 f23 2]%3_ 1



Rolling Shutter Geometric Modeling and Optimization
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O Global shutter geometric model: The eight-point algorithm

Given a set of correspondences {x;; < x;,-}, we want to determine the matrix FF that encodes the bilinear
condition: xT.Fx;; = 0

This matrix can be recovered using the property of the Kronecker product:
x'Fx,=0& vec(x;‘;,in_f) =0 (xﬂa X x}:,,)vec(F) =0

Every correspondence yields a homogeneous equation in the 9 unknown of F. From n corresponding
points we get the system:

_ T T —
X1 ® xiy

X3¢ ® Xor vec(F) = 0.

T T
L Xne X xm*—f
¥

Ay

The solution of this system is the ker(4,,). When the points are in general positionandn = 8, the
solution is determined up to a multiplicative factor. In practice, when more than 8 points are available the
solution can be obtained using the SVD.
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. @4
u Global shutter geometric model: The eight-point algorithm

The matrix F estimated from the system Agvec(F) = 0, in general does not have rank(F) = 2.

The rank-2 condition can be enforced using the following

Theorem (Eckart-Young). Let A be amXn matrix of rank r and be A = U,.DV,T be its
compact singular value decomposition: 4 = }I_; Jiuivf.
k T

The rank-k matrix closest to A in Frobenius norm is the matrix 4, = }.;—; o;u;v; .

thus computing the SVD of the estimated F and considering the closest rank-2 matrix in Frobenius norm.

Alternatively, the rank-2 condition can be enforced directly by construction using the seven-points
algorithm.



Rolling Shutter Geometric Modeling and Optimization
I

n Global shutter geometric model: Nonlinear refinement

> Instead of minimizing an algebraic error, it is better to minimize geometric errors that can be
expressed in terms of the distances between points and their corresponding epipolar lines:

) _d(Fz,)’ +d(F ez’

where d is the Euclidean distance between a point and a line.

Residuals for the fundamental matrix

v Algebraic distance: x, Fx, o A\ -0
v Symmetric epipolar distance: Z d(Fe,x)>+d(F "z, x,)>

v" Sampson distance (the geometric distance to the first order approximation of the curve):

(z, Fx,)®
(Fz)i+ (Fz)s+ (Flz)i+ (F'z)3

v Reprojection error (distance to the “epipolar cone”): mind(z,,p)*+ d(z,,q)?* subject to ¢' Fp =0
p,q
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u Rolling shutter geometric modeling

>

Due to the temporal-dynamic exposure characteristics of the rolling shutter camera, each of its
scanlines usually possesses a different projection center, i.e., a series of latent local frames.

o
1
/ 0
/ 3D Point | Q
// l \
/ | A
/ ‘ AN
/ ‘ \
/ : \
I \
| \\
// | \
\
/ | o 0 0o \
/ | \ Different scanlines have different projection centers. For
/ | >
/ i

any pair of correspondences (indicated by ‘x’), the co-
planarity constraint still holds.
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I

O

Rolling shutter geometric modeling

Suppose that the local poses of each scanline of a general rolling shutter camera trace out a smooth
trajectory in the SE(3) space.

>

(a) Uniform motion model is mainly used for various minimal solver problems (e.g.,
relative/absolute pose estimation), combined with the discrete epipolar geometry method and
the discrete 3D-2D projection method.

(b) Differential motion model is more suitable for adjacent frame motion modeling, combined
with the differential epipolar geometry method and the differential 3D-2D projection method.

(a) Uniform motion model . (b) Differential motion model

-—_{_E?;' ' IU
i

o st scanlines Other scanlines
S T




Rolling Shutter Geometric Modeling and Optimization

n Rolling shutter model: Uniform motion model

€ Modeling

Assume that the smoothly moving camera rotates at a constant angular velocity weR? and translates at a

constant linear velocity v R?® at the same time.

Assume that the first scanline of the rolling shutter image has 6 DoF absolute poses R,cS0(3) and t,cR?® in

the world coordinate system
The absolute camera poses P, = [R,,t,] of s-th scanline satisfy:

R,= (I+sin(sw) [n].+ (1—cos(sw)) [n]2)R,,
tS:t0+3'0,

Meingast M, Geyer C, Sastry S. Geometric models of rolling-shutter cameras. arXiv preprint ¢cs/0503076, 2005.

(a); >V )

(R,t)

essss——— [irst scanline All the other scanlines
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n Rolling shutter model: Uniform motion model

€ Modeling

Since the camera typically has a rapid scanning time, it is reasonable to make the assumption that the inter-
scanline rotation displacement is sufficiently small.

Using the small-rotation approximation yields the uniform motion model:

R,= (I+s[w].)Ro,
ts - t() -+ sv.

All the projection centers will form a spiral 3D trajectory.

Uniform motion model and its variants

Motion Pose P Application Examples

linear I, sv] e.g. vehicles traveling in a straight line

orbital I+ s[w]x, v] e.g. video clip taken by hand-held devices

spiral I+ s[w]x, sv] e.g. general RS cameras with smooth motion

linear I+ s[w]x, —s(I+ s[w]x)v] e.g. 3D-2D projection geometry based on continuous video sequences

Saurer O, Koser K, Bouguet J Y, et al. Rolling shutter stereo. CVPR 2013.
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O

Rolling shutter model: Uniform motion model

€ Optimization

Given N pairs of 3D-2D correspondences, including the 3D point coordinate X; € R?® (in the world coordinate
system) as well as the corresponding 2D image coordinate x; = (u;,v;) € R?, we can obtain the absolute pose of
x; as P, = [Ry,, t,,].

Consequently, the RS-aware re-projection error can be derived as

N
v*,w* =aTgmmZ||Xe _?T(Xii‘Pui)Hgﬁ (D
@i
where 7(-) : P? — P? denotes the projection function, defined as

™ (Xi? P'U-:;) = (K (RUiX'-': + tui)) 3

(@, y,2)") = (2/2, y/2)".

Here, K i1s the intrinsic matrix whose calibration is easy to implement, e.g., by applying any standard camera

(2)

calibration procedure to a still scene image captured by a stationary RS camera.
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O Rolling shutter model: Differential motion model

€ Modeling (Motion parameterization)

Assume that there is a relatively small inter-frame camera velocity (v, w) between the first two scanlines of two
consecutive RS frames. Then, the intra-frame camera motions of all other scanlines can be obtained by interpolation.
Formally, the absolute camera position and rotation (pj*, r]") (resp. (p52,r3?)) of the s;-th (resp. so-th) scanline
in frame 1 (resp. frame 2) w.r.t. the first scanline of frame 1 can be expressed as:
Pl =A'w, 1 = Aw,
Py’ = A'v, 1yt = A,
where A]* and A3? denote the interpolation factors.

Therefore, the relative motion between the s;-th and s,-th scanlines will satisfy

_ 82 51 S0 81
Vs150 = P2 —P1 = ()\2 — Al )'U:

_ 82 51 82 81
Wsis, =TIy — T = (’\2 - )‘1 ]L«J

e [irst scanline All the other scanlines
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O

Rolling shutter model: Differential motion model

€9 Modeling (Linear interpolation)

To efficiently model the above interpolation factor, Zhuang et al. proposed a linear interpolation under the

assumption of constant velocity motion, i.e.

| . (3)
A2 =14 2,

h
Here ~ is the readout time ratio, which indicates the ratio between the total readout time and the total frame time

(including inter-frame idle time). & is the total scanline number in an RS image.

Since so — s1 can be expressed by the vertical optical flow f,, i.e.

vty

A=At =1 .
2 1 + h

4)

the scanline-varying camera poses can be recovered through a simple linear scaling operation.

Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.
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u Rolling shutter model: Differential motion model

€ Modeling (Quadratic interpolation)

Further and more generally, under the constant acceleration motion assumption, a quadratic interpolation was

also proposed by Zhuang et al. , i.e.

2 vs1  k /vs1\2
o k(21y?),
LT 52 ( n 3 \h )

2 vsa k Y892\ 2
A= —— 1+ == —(1 —) ,
: k+2( TR U T

where k denotes the acceleration factor and is in the same direction as the camera velocity, i.e., k > 0 for acceleration

(5)

and k < 0 for deceleration. Note that k£ needs to be estimated additionally when used.

Linear interpolation is a special case of quadratic interpolation when k=0.

Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.
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O Rolling shutter model: Differential motion model

€ Optimization
The RS-aware differential re-projection error can be developed as

f; — Bi (A'i_v + B-iw)

where 3; = \;* — A]', and the normalized image point x; in scanline s¢ corresponds to a forward optical flow of

2

(6)

i=1 2

f' = (f),f’) and corresponds to a 3D point of depth Z;,

- U €Tq
A'.i = f :
0 —f w
Ty . z? ‘
B, = r (1+%) w
yf Tilli .
i (f * T) —7 —Ti

with f being the camera focal length.

Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.
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u Typical application 1: Differential motion model

(a) Two consecutive RS images (b) RS-Aware Differential StM

RS-Aware
4 Optical flow
> EEEm——

Waming

(d) Rectified image (c) RS-Aware Depth Map

RS-aware differential SfM and image rectification

Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.
Ma 'Y, Kosecka J, Sastry S. Linear differential algorithm for motion recovery: a geometric approach. 1JCV 2000.

The RS-aware differential re-projection geometry between 3D scene flow and

2D optical flow can be modeled by a linear scaling operation: B=1+ 'f"
1 — 0 =z Zid - (f ﬁ) Yi
RN v+ I, ! w
2\ 0 —f w (f+ yT‘) — S —T;

By further eliminating the RS depth Z , the RS-aware differential epipolar
constraint under the constant velocity model is:

fT T
—vx—x s =10
B
where s = %(’ﬁ’lf) + ). We can solve for the rolling shutter relative motion using

conventional linear 8-point algorithm (Ma 2000).
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n Typical application 2: Differential motion model
o e el The RS-stereo-aware differential re-projection geometry between 3D scene flow
_onsecutive RS Stereo ln‘l:L.\ S-slerco-Aware ouon Estimation . . . . (fovi
and 2D optical flow can be modeled by a linear scaling operation: pi =1+ A
RS-Stereo-Aware
Optical Flow o T (t3 - bﬂﬁ’) — f:rtl azry . T_Q ’}‘fmy A i tr rot
. Y (t3 - birg) — fy (t“? + bi’l’) _ ﬁry ( i) _ '—nym‘| a (i Jtr ‘-r'ot)
”““"‘[ Z AR SR A I AL B

GS-Stereo
Matching Methods

By further eliminating the RS depth Z,, the RS-stereo-aware differential epipolar
constraint under the constant velocity model is:

RS-Stereo-Aware Correction

1
E (’UJ?;'U

tr try _  rot_tr Jjrot_ tr .
i = )—ut— v, —v,Cu, t=1,r.

(c) RS Depth Map

(d) Corrected Left Image

RS-stereo-aware differential SfM and image rectification

(a) Original RS left images (b) Corrected images
(constant velocity)

Fan B, Dai Y, Wang K. Rolling-shutter-stereo-aware motion estimation and image correction. CVIU 2021.
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n Typical application 1: Uniform motion model

® 3D Point Single linearized model:
/9 |
A B .
| \ «; C; =K [(I -+ (?“3‘ — TQ)[W]X)RD ‘ Co + (?"3' — ?“D)t] X;
// ‘ \\ 14+ A(r? + ¢2)
‘ \ This model is rather complex. For calibrated RS camera and assuming Cayley parametrization of R,,
.o .\ this model results in six equations of degree three in six unknowns and 64 solutions.
Double linearized model:
T
— a; = K[(T+ (ri —ro)[W]x) (T + [v]x) | Co + (ri — r0)t] X;

2 2
RS Perspective-n-point (RnP) problem L+ A7 +¢cf)

This model leads to a simpler way of solving the calibrated RS absolute pose from = Six 3D-2D point
correspondences.

Albl C, Kukelova Z, Pajdla T. R6p-rolling shutter absolute camera pose. CVPR 2015.
Albl C, Kukelova Z, Pajdla T. Rolling shutter absolute pose problem with known vertical direction. CVPR 2016.

Kukelova Z, Albl C, Sugimoto A, et al. Linear solution to the minimal absolute pose rolling shutter problem. ACCV 2018.

Albl C, Kukelova Z, Larsson V, et al. Rolling shutter camera absolute pose. I[EEE TPAMI 2019.
Kukelova Z, Albl C, Sugimoto A, et al. Minimal rolling shutter absolute pose with unknown focal length and radial distortion. ECCV 2020.

Bt B~ woNnoe

Albl C, Kukelova Z, Larsson V, et al. From two rolling shutters to one global shutter. CVPR 2020.
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n Typical application 2: Uniform motion model

Consecutive frame el Ro"ing Sh utter Homogra phy azq; — HRS,iqi

eSmooth motion
eConstant velocity

—

tgl’lg—
d;
= (Ry + Ryv; + Rov] + Rav;v))
+ (t() +tiv; + tQU; -+ t3’Ué2 + t4’U3"U£ -+ t5’U§’U£

Hpgrs: =Ri —

High framerate RS
video sequence

(No +Nyv;)
= gRﬂ + t0N01+£R1 +t1Np + tONl)J“Ué
H:s ﬁj
Impossible to enforce: + (R2 + thg) ’U; =+ (Rf; + t4Ng + t2N1) ’U%"U;
eRelative pose S— ~ ~ 4
eInstantaneous-motion H»> Hs
+ (t3N0 -+ thl) ’U? -+ (tSN[] -+ t4N1) ’U‘f’vg

(b) General unordered image set H, H.

+ (t3N1) 03 + (t5Ny) 2]
N, e’ N, e’

e Hsg Hy

HRS,i =Hgs +Hyv, + H2vi,+H3UiUi’+ H4Uz'2 + H5vi2vi,+H6vi3 + H7Ui3’Uz'/

To estimate the full rolling shutter homography matrix, at least 36 2D-2D point
correspondences are required. A DLT solution can be obtained by using SVD.

General RS Homography

Lao Y, Ait-Aider O. Rolling shutter homography and its applications. IEEE TPAMI 2020.



Rolling Shutter Geometric Modeling and Optimization
I

u Typical application 3: Uniform motion model

Rolling Shutter Camera Relative Pose:
Generalized Epipolar Geometry

Yuchao Dai, Hongdong Li, Laurent Kneip

CVPR 2016



Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry

-
u Rolling Shutter Models:
>

A rolling shutter camera does no longer possess a single center-of-projection in the general case.
Instead, each of its scanlines generally has a different projection center (temporal-dynamic) as
well as a different local frame and orientation.

When an RS camera is in motion during image acquisition, all its scanlines are sequentially
exposed at different time steps; hence each scanline possesses a different local frame.
Mathematically, we need to assign a unigue projection matrix to every scanline in an RS
image. For example, for the u;-th scanline, we have

P, = K[Ry,, tu].



Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry
I

O Rolling Shutter Models:
» Linear rolling shutter camera:
Pu; — [Rﬂatﬂ + ij‘d]-

We use the top-most scanline’s local frame [R,, ty] as the

reference frame of the RS image Linear RS camera Uniform RS camera
» Uniform rolling shutter camera: (
Col’dl)
Ry, = (14 sin(uiw)[n]« + (1 — cos(uiw)) []%)Ro, IS
, ' ' ((}321(32)

t, =ty + uid.

Under the small-rotation approximation, we have I N _/
Ry, =(I + uiw[n]x)Ro, (Ro.t)

t, =ty + u;d.

essssss— [irst scanline All the other scanlines



Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry

O

Rolling Shutter Relative Pose:

For a rolling-shutter camera, every scanline has its own distinct local pose. As a result, every pair of
feature correspondences may give rise to a different “essential matrix”. Formally, for X. <> X;, we have

1T _
x;' By uxi = 0.

Note that E is dependent of the scanlines U, and u’; . In other words, there does not exist a single
global 3 X3 essential matrix for a pair of RS images. Given two scanlines U;,U;and the corresponding

camera poses P, =[R,.t, | and P, =[Ruj ,tuj] , we have

Euu = [ty — RyR.ty,]xRyR..

Despite the fact that different scanlines
possess different centers of projection,
for a pair of feature correspondences
the co-planarity relationship still holds.
As such, the concept of two-view
epipolar relationship should still exist.



Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry
I

Rolling Shutter Essential Matrices:

Generalize the conventional 3 X 3 essential matrix for perspective cameras

Derive 5 X5 and 7 X7 essential matrices for different types of Rolling-Shutter (RS) cameras
Filling the gap of 4 X4 and 6 X6 essential matrices for Push-Broom (PB) cameras

VvV V[

Table 1. A hierarchy of generalized essential matrices for different types of rolling-shutter and push-broom cameras.

Camera Model Essential Matrix Monomials Degree-of-freedom | Linear Alponthm | Non-linear Algorithm Motion Parameters
fuu fhiz fis
Perspective camera f21 faz faa (w14, 1) 32 =0 B-paint 5-point Rt
fa1 faz  fas
0 0 fizs  fua
Linear push broom 0 0 fas fa (wgerg, my, vy, 1) 12 =42 - 22 11-paint 11-point R.t.d). da
fa1 fs2  faz  faa B =
far faz fas faa
[ 0 fis fuia fis
1] 0  faiz faa  fos
Linear rolling shutter fax faz faz fsa  fas {u? Ui, Uy, v, 1) 21 =52 -192 20-point 11-point R.t.d;. da
fa faz faz fa fas
fo1 fsa fsz fsa fass
0
0

|' 0 fiz fuu his s '|
0 faz faa fas  fos
Uniform push broom j;:i ;:i ﬁ: _.J:::: ;:: ;;:2 (wfv;, u?, wivg. v, v, 1) 32=52-22 31-paint 17-point R.t.wy. wo dy. dso
fa1 fs2 faa fsa fas  fae
for  fez  fes  fea  fas  fes
( i 0 fa fia fis fis fir 'I
0 0 fam fa fas fae  Sfor
far faz faz faa fas  fas  far ‘

Uniform rolling shutter far faz faa faa fas fae  far {u;’. u? Vi, Lt:-z_ wgg, ug, v, 1) | 45 =72 =22 A4-point 17-point R.t,wy. wo, d). ds
fsr fs2z fsa fsa fss  fse  far
|- fer faz fea fer fes fas fer

frn fra s fra fis fre Sar
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u Example 1: A 5 X5 essential matrix for linear RS cameras

Expanding this scanline epipolar equation, one can obtain the following

For a linear rolling shutter camera, since the inter-scanline motion is a _
5 x 5 matrix form:

pure translation, there are four parameter vectors to be estimated, namely
{R,t,d;.d2}. The total degree of freedom of the unknowns is
3+34+3+3-1=11.

The epipolarity defined between the u;-th scanline of the first RS frame
and the ul-th scanline of the second RS frame is represented as

E,, = [tu;u;]x R, where the translation t, ,, =t + uidy — u;Rdy. This

|
|
|
|
| 4T
|
|
|
|
|
[
translates into I
|
|
|
1
|
|
|
|
|
|
[

u;? 0 0 fiz fisu fis u?

U; V; [ 0 0 fiz fu fs } [ Ui Vi

u: fai fo fi3 fu f35 uj =0, (8)
v { far fao faz faa fas ‘ { Vi ‘

1 fo fo fiz fu fis

u,-u:f
where the entries of the 5 x 5 matrix F = [f; j] are functions of the 11
unknown parameters {R,t,d;,d>}. In total, there are 21 homogeneous
variables, thus a linear 20-point solver must exist to solve for this
hyperbolic essential matrix.

id> — u;Rd; ] Ri| v; | =0. (7)
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u Example 1: A 5 X5 essential matrix for linear RS cameras

» Proof:

By redefining di + Rdi, we easily obtain

E,y = ([t + uildo]x — uifdi]«) R 9)
Denoting Ep = [t]x R, E1 = [d1] xR and E» = [d2] xR, we have:

[uf, v/, 1](Eq + u/Ez — t;E1)[ui, vi, 1]7 = 0. (10)
The 5 x 5 matrix F is defined in the following way

[ 0 0 Ein Einn Eim -|
0 0 E; 1» Ev»n E3»
F=| E&En E=x a b c . (11)

Esi1o E»n B+ Bz Ei» B

Exizs Exps Egia+ Exss Eozz Eoas

where a = Eg11 + E1.13 + E231, b = Eg 21 + E1.33, ¢ = Eg 31 + Ei1.33. Finally, it is easy to
verify the equation

S R T R B 2 T _
[uf ,UI-V“UI-,VF.,].]F[U‘;,U;V;, u.r'avr':]'] = 0.

The “epipolar lines” for a linear RS camera are hyperbolic
curves. It is easy to verify that the generalized essential matrix
for linear rolling shutter camera is full rank and the epipole
lies in infinity.

“epipolar lines”
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u Example 2: A 7 X7 essential matrix for uniform RS cameras

Expanding this equation with the aid of the small rotation approximation
results in

Consider a uniform RS camera undergoing a rotation at constant angular

velocity w and a translation at constant linear velocity d. We assume the
Ry, = (14 ui[wal)Ro(l — wilwi]x), (14)

i

angular velocity is very small. By using the small-rotation

approximation,we have the uj-th scanline’s local pose as and we finally obtain:

’

-
3 "2 2 0t 0t 3 2 2
|:Ui s Ui Vi, Uj :U;'V;':Un‘f;al] F [U;':U; Vi, U;':U;Vhlfh‘-fhl] =0, (15)

Pu,' = [(I + uf[w]X)RU: tU + U,‘d]. (12)

I
I
|
|
|
|
|
|
|
|
Given a pair of two corresponding uniform RS camera frames, we then have ! where -
____________________ : 0 0 fis fhs fis fe fiz
I
|
|
|
|
|
|
|
|
|

f

[ui v

IR

|

I "ds — 1 , Ty v 117 = 0 0 fHs ha fhs fe by
L[t + u;d; U’Ru;ur. d;]« Ru;ui:[u,J vi, 1] 0. (13) bR e e e
F=| fax fao faiz faa fas fae faz
for foo fi3 fou fi5 fse  fo7
for foo fo3 foa fos foe  for
frn fo f3 fu fis Fe

This gives a 7 x 7 RS essential matrix F, whose elements are functions of
the 18 unknowns (i.e. {R,t,wi,w>,d;,d>}). Also note the induced
epipolar curves are cubic.

“epipolar lines”
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u Epipolar Curves

Uniform PB

Linear RS Uniform RS Linear PB

| RS camera vs PB camera

Both RS camera and PB camera have a scanline dependent pose, i.e., temporal-dynamic center of
projection. For PB cameras, the scanline direction is fixed relative to the local coordinate while the
scanline direction changes with respect to the local coordinate for RS cameras. This creates the main
difference between PB cameras and RS cameras and the extras freedom explains the increased order
of polynomials in expressing the generalized epipolar geometry (4 VS 6 and 5 VS 7).
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u Linear N-point algorithms for RS cameras:

> Let us use as an example the linear RS camera to derive a linear 20-point algorithm for solving
the linear RS essential matrix. The linear solutions for other types of cameras in the table can
be similarly derived.

@ (1) Solving the 5 X5 linear RS essential matrix:

The linear RS essential matrix F contains only 21 non-trivial homogeneous
variables, hence its degree of freedom is 20. Collecting 20
correspondences, one can solve for the 5 x 5 matrix F linearly by SVD.

@ (2) Recovering atomic essential matrices:

Once the 5 x 5 matrix F is found, our next goal is to recover the individual
atomic essential matrices Eg, E; and E». Eq.-(11) provides 21 linear
equations on the three essential matrices. As the three essential matrices
consist of 27 elements, we need six extra constraints to solve for Eg, E;
and E»>. To this end, we resort to the inherent constraints on standard

3 x 3 essential matrices, det(E) = 0 and 2EETE — Tr(EE")E = 0, since
Ey, E; and E; are standard 3 x 3 essential matrices.



Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry
I
u Nonlinear geometric errors for RS cameras:

» Normalization: » Nonlinear Solvers w/ Sampson Error:
In solving the linear RS essential matrix F, it is important to implement a
proper normalization: 1) Normalizing the image coordinates data (u;, v;)
and (u;,v;) in the way as described in [Hartley 1997]. 2) Under the linear
rolling shutter relative pose formulation the inputs are monomials

(u?, ujvi, uj, vi, 1) and (u;? A u v 1), a better normalization should be

R

2
defmed} on (uf, ujvi, uj, vi,1) and ( uI vj,uj, vl,l) rather than (u;, v;)
and ( ) Therefore we propose to normalize (u?, u;v;, u;, v;, 1) and

(u uivi, Ui, vl 1) in the way as in [Hartley 1997].

Based on the above generalized essential matrices, we can now also devise
nonlinear solvers. Instead of minimizing an algebraic error, we minimize
the geometrically more meaningful (generalized) Sampson error metric.
For example, in the case of a uniform RS camera, the Sampson error is the
first-order approximation of the distance between a (generalized) feature
vector X; [u u Vi, u2 u;Vv;, Uj, v;, l]T and its corresponding RS epipolar
curve, i.e.,

- (x;"Fxi)?
€Sampson — AT (20)
; i1 ((Fxi)7 + (FTx)?)
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u Experiments

» Accuracy versus noise level

.:j:‘-" ; 1.5
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(a) Rotation estimation error (b) Translation estimation error

Figure: Performance evaluation with increasing Gaussian noise.

Our linear RS camera model always achieves better performance than the global
shutter camera model, while both rotation and translation errors increase with
increasing noise level.
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O Experiments

» Accuracy versus focal-length
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(a) Rotation estimation error (b) Translation estimation error

Figure: Evaluation on decreasing focal length.

With a decreasing focal length, the RS effect becomes increasingly well observable,
leading to a decrease of the motion estimation error.
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u Experiments

» Accuracy versus RS velocity

614 -
5. B Global Shutter . Z B Global Shutter
—'é I | |Linear Rolling Shutter 2 [ |Linear Rolling Shutter |
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g = .
56 E
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e Rolling shutter camera velocity Rolling shutter camera velocity

(a) Rotation estimation error (b) Translation estimation error

Figure: Evaluation over decreasing translation velocity.

With an increasing velocity, our linear RS model achieves an obvious improvement

in pose estimation, which suggests that the RS effect is more observable under
large linear and angular motion.
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» Test on real RS images

| (a) Global shutter model (b) Rolling shutter model

Comparisons of the Sampson errors for a pair of images taken from a RS video dataset. 12001

(a) shows the final result of Sampson error minimization based on a global shutter
model. The error distribution has a structure in the image plane, indicating regions for
which the RS distortion is not properly taken into account. (b) shows how the inclusion
of a RS model and the extended Sampson distance take those distortions into account,
and produce a reprojection error that distributes much more uniformly across the .

entire image plane. 0 05 1 15 2 25
Error Histogram

—GS
1000 | ——RS

800 -
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Conclusions

Novel generalized essential matrices of size 4 X4, 5X5, 6 X6, and 7X 7 for linear PB, linear RS,
uniform PB, and uniform RS cameras, respectively.

Effective linear N-point algorithms and non-linear Sampson error minimizers for solving these
generalized essential matrices.

The entire work represents a unified and elegant framework for solving the Relative Pose
problem with new types of cameras, including the practically relevant and previously unsolved
case of a RS camera Potential extensions : light-field cameras, general linear cameras, and
generalized camera models.

The theory promises a more general applicability to spatio-temporally scanning sensors, such
as satellite imagery and sweeping Laser scanners.
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For more content, see our recent rolling shutter review paper:

Bin Fan, Yuchao Dai*, Mingyi He. Rolling Shutter Camera: Modeling, Optimization
and Learning[J]. Machine Intelligence Research, 2022.




