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1. Introduction
-
O Rolling Shutter Effect
>

Create some unintended geometric distortions if you're filming fast-moving subjects or panning
your video camera across a scene, such as skew, wobble, etc.
> Common in footage from DSLRs and mobile phone cameras.

Rolling Shutter Global Shutter

When RS effect relevant for computer vision:

. 3D modeling from images;

. Visual SLAM;

. Video stabilization, Video panorama, etc.;
. Any geometric measurement from images.

Rolling shutter image Global shutter image



1. Introduction

] Problem Formulation

Latent global shutter image sequence Rolling shutter image

v Rolling shutter images can be viewed as the result of the row-wise combination of global shutter images captured by a
virtual moving GS camera during imaging.

v Rolling shutter images implicitly contain rich high framerate temporal dynamic observation information, i.e., camera
motion information (temporally) and scene 3D information (spatially).

v' Under the framework of temporal dynamic modeling and deep learning, recovering the global shutter image
corresponding to a specific exposure moment (i.e., Rolling Shutter Correction, RSC) or corresponding to any
exposure moment (i.e., Rolling Shutter Temporal Super-Resolution, RSSR) has become a research hotspot.



2. Rolling Shutter Correction

O
>

Formulation:
Given a single or multiple rolling shutter images, we aim at estimating the undistortion flow to

recover a latent global shutter image corresponding to a specific exposure moment, such as the
first/middle scanline of the rolling shutter frame.

Undistortion flow

Rolling shutter (RS) image Global shutter (GS) image



2. Rolling Shutter Correction
N

Undistortion Flow vs. Optical Flow
The undistortion flow map exhibits the significant scanline dependence.
The undistortion flow near the target scanline appears as smaller warping displacement values;

The undistortion flow corresponding to pixels that are opposite to the target scanline shows different
warping displacement directions.
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2. Rolling Shutter Correction
N

O
>

Related work:
Over the last decade, several traditional works usually rely on hand-designed prior assumptions,
geometric constraints, and complex optimization frameworks to remove the rolling shutter effect.

In recent years, several appealing deep learning-based rolling shutter correction methods have
been proposed, where a convolutional neural network is trained to warp the rolling shutter frame to
its global shutter counterpart. This essentially becomes an image-to-image translation problem.

[ ] Single-frame input [l Two-frame input

Traditional method Tac
Vasu et al. Albl et al.* B Multi-frame input RS stereo setup
Purkait et al. Purkait et al. Laoetal Fanetal.*
Rengarajan et al. Zhuang et al. Lao et al. Zhuang et al. Wu et al. Bai et al.
=@ @ @ @ ® @ @ >
2016 2017 2018 2019 2020 2021 2022
Rengarajan et al. Zhuang et al. Liuetal. Zhong et al. Zhong et al.*
Mo et al. Fan et al.® Fanetal.

Deep learning method Rajagopalan et al. Caoetal

Timeline of rolling shutter image correction methods.



2. Rolling Shutter Correction
I @4

u Related work:

> Single-frame rolling shutter correction is inherently a highly ill-posed problem.
E.g., Zhuang et al. use data-driven priors through a network that learns the underlying scene depth
and intra-frame motion from a single rolling shutter image, followed by a post-processing step to
generate a geometrically consistent image.

> Using at least two consecutive frames can make it tractable.

Input RS-distorted image

Depth & Velocity

Rectified image Depth map Intra-frame motion

Zhuang B, Tran Q H, Ji P, et al. Learning structure-and-motion-aware rolling shutter. CVPR 2019.



2. Rolling Shutter Correction
N

O
>

Related work:
These multi-frame-based methods consist of two main components: a pixel-wise motion estimation

module and a global shutter frame synthesis module.

The pixel-wise motion estimation module is dedicated to estimating the pixel-wise motion field,
which is then used to warp the image appearance information of adjacent frames to the target
global shutter instance;

The global shutter frame synthesis module aims to aggregate the context information from coarse to

fine and finally decode the desired global shutter image.

¢ v v
- Pixel-wise motion _ [ Pixel-wise motion _ o[ Pixel-wise motion
estimation estimation estimation

T - Frame warping - -» Frame warping - Frame warping

.’
! !
£ GS frame GS frame
synthesis module synthesis module

h 4

Middle RS frame

GS frame
Common framework for deep learning-based RS image correction methods.



2. Rolling Shutter Correction
N

Deep Shutter Unrolling Network

Peidong Liu, Zhaopeng Cui, Viktor Larsson, Marc Pollefeys

CVPR 2020



2.1. Deep Shutter Unrolling Network

. @4
u Pipeline:
>

Given two-frame rolling shutter images as input, Liu et al. proposed a deep shutter unrolling
network (i.e. DeepUnrolINet) to recover the desired global shutter image from two consecutive
rolling shutter images.

19

cur

Liu P, Cui Z, Larsson V, et al. Deep shutter unrolling network. CVPR 2020.



2.1. Deep Shutter Unrolling Network

u Pipeline:
>

First, the information of the two frames is combined to estimate the undistortion flow, which can be
inspired from the optical flow estimation network.

Motion estimator!

Velocity field 2

Velocity field 1

T1 TO

Displacement field O Displacement field 1 Displacement field 2

Velocity field 0
T Y

19

cur

0 Image encoder [ DenseNet block [ Correlation layer BB Predict image (1] Bilinear upsampling
B ResNet block [ Forward warping block [ Deconvolution layer Il Velocity field prediction



2.1. Deep Shutter Unrolling Network

u Pipeline:
> Then, the image appearance features are warped to a common global shutter canvas, which is
subsequently decoded to the target global shutter image in a coarse-to-fine manner.

0 Image encoder [ DenseNet block [ Correlation layer BB Predict image (1] Bilinear upsampling

B ResNet block [ Forward warping block [ Deconvolution layer Il Velocity field prediction



2.1. Deep Shutter Unrolling Network

u Shortcoming of DeepUnroliNet:

> Despite the promising performance, DeepUnrolINet solely uses the warped feature map
corresponding to the second rolling shutter image when decoding the target global shutter frame,
which tends to lead to content missing in the unseen regions of the recovered global shutter image.

(al) Input RS image 1 (b1) GS image at 1.5t by DeepUnrolINet (cl) GS image at T by DeepUnrolINet

1a2) Input RS image 2 (b2) GT GS image at1.5t (c2) GT GSimage at T



2. Rolling Shutter Correction
N

SUNet: Symmetric Undistortion Network
for Rolling Shutter Correction

Bin Fan, Yuchao Dai*, Mingyi He

ICCV 2021



2.2. SUNet: Symmetric Undistortion Network for RS Correction

O Background:
> RS cameras are usually time-synchronized with other sensors (e.g., GS camera, IMU, etc.) in hardware

by referring to the first scanline time.
> It is crucial and valuable to recover the GS image corresponding the first scanline of the second frame
(i.e., the intermediate time t of these two frames).

RowH

w

1
0 72 T 3¢/2 21 time

[Schubert et al, IROS’19] [Wang et al, RAL&ICRA’21]



2.2. SUNet: Symmetric Undistortion Network for RS Correction

. @4
O Objective:

> Given two consecutive rolling shutter images, recover the global shutter image corresponding to the
camera pose of the first scanline of the second frame.

Undistortion flow

Rolling shutter (RS) image Global shutter (GS) image



2.2. SUNet: Symmetric Undistortion Network for RS Correction

. @4a@
O Challenges:
>

Maybe large pixel displacement (e.g., foreground objects): The pixel of the target GS image may
not be in the neighboring pixel of its corresponding RS image, depending on the type of motion, the
3D structure, and the scanline time.

> Due to the temporal continuity, we observe that the first and second RS images contribute greatly
to the lower and upper parts of the corresponding time-centered GS image, respectively.

Original RS image 2 Ground truth GS image

Predicted only by RS 1 Predicted only by RS 2 Our corrected GS image



2.2. SUNet: Symmetric Undistortion Network for RS Correction
I 4@

O
>

Contributions:

We propose an efficient end-to-end symmetric rolling shutter undistortion network to solve the
generic RS correction problem with two consecutive frames.

Our context-aware cost volume together with the symmetric consistency constraint can aggregate
the contextual cues of two input RS images effectively.

Our method significantly outperforms the state-of-the-art methods in both GS image restoration and
inference efficiency.

[]

D

F - mbohov L2

-

Inputs SUNet (Ours) DeepUnrolINet



2.2. SUNet: Symmetric Undistortion Network for RS Correction

u Pipeline of our method:
> First, two time-symmetric dense undistortion flows are estimated by using well-established principles:
pyramidal construction, warping, and cost volume processing.

> Then, both rolling shutter images are warped into a common global shutter one in the feature space.
> Finally, a symmetric consistency constraint is constructed in the image decoder to effectively
aggregate the contextual cues of two RS images, thereby recovering the high-quality global shutter

image. 4

[
|
@@@ §-proii@-

Cost wlume
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2.2. SUNet: Symmetric Undistortion Network for RS Correction

O

Training loss: £ = AL, + A\oLp + AeLe + AsLs

Reconstruction loss: evaluating the pixel-wise
reconstruction quality of the corrected GS image on
multiple scales

L
o= 3 Ji-a],

I=lp—1

Perceptual loss: preserving details of the predictions
and make estimated GS image sharper

£o= 3 e (r) o (1)),
I=lp—1

Smoothness loss: encouraging piecewise smoothness
in the estimated undistortion flows

=Yy |vrs),

t=1 I=ly

Consistency loss: To combine cues from two consecutive
RS frames, we enforce their respective warped features to
be as close to each other as possible in the symmetric space.
l.e., we supervise the network to align the forward and
backward images predicted by the first and the second RS
images respectively across different levels
2 L
L.=3%"

t=1 I=lp

-1 -1
IGT _ It—}ng

Symmetric
Consistency

—) —P e
IZﬁg

Backward image




2.2. SUNet: Symmetric Undistortion Network for RS Correction
I

u Experiments

» Results on Carla-RS and Fastec-RS benchmarks

PSNRT (dB) SSIMT
Methods CRM CR IR CR IR
Single-frame [34]  18.70  18.47 - 0.58 -
Model-based [32] 2593 22.88 21.44 077 071
DSUN [ 18] 2690 2646  26.52 081  0.79
SUNet (Ours) 2928 29.18 2834 0.85 0.84

(@) Original RS image 2 (b) Ground truth GS image (c) Zhuang et al. [32] (d) Liu et al. [18] (e) Ours




2.2. SUNet: Symmetric Undistortion Network for RS Correction
I

u Experiments

» Qualitative comparison

Model-based Single-frame



2.2. SUNet: Symmetric Undistortion Network for RS Correction
I

O Experiments

» Intermediate outputs of our method

(@) RS image 1: |_L

(b) RS image 2: |, (c) Forward undistortion flow: | (d) Backward undistortion flow: F,

(e) Forward GS image: |1_>g

(9) Our corrected GS image: |g (h) Ground truth GS image: | .,



2.2. SUNet: Symmetric Undistortion Network for RS Correction
N
O Experiments

» Ablation study on loss function » Handle significant depth-dependent occlusion

Table 2. Effectiveness of different combinations of training losses.

PSNRT SSIMT
CRM CR FR CR FR
wlo L, 28.00 27.90 27.29 0.83 0.81
wlo L,, 29.08 28.95 28.20 0.85 0.84
wlo L. 29.05 28.94 27.89 0.84 0.82
wlo L, 29.19 28.07 28.15 0.85 0.83
full loss 29.28 29.18 28.34 0.85 0.84

Table 4. Ablation study on the consistency loss. A. = 0 means
no consistency loss is used. The self-supervised consistency loss
is defined as measuring only the difference between forward and
backward GS images. Our loss function is effective to align con-
textual cues, especially the Fastec-RS dataset.

. PSNRT SSIMT
Consist. Loss CRM CR ER R R
Ae=10 2905 2894 27.89 084 0.82
Self-supervised 29.15 28.99  28.02 0.85 0.83
Ours 2928 29.18 28.34 0.85 0.84

Input RS 2 Ours GT



2.2. SUNet: Symmetric Undistortion Network for RS Correctionv
I 4

O Experiments

» Correction results on RS video!!]
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[1] Forssen P E , Ringaby E. Rectifying rolling shutter video from hand-held devices. CVPR 2010.



2.2. SUNet: Symmetric Undistortion Network for RS Correction
I 4@

O Experiments

> 3D reconstruction

(a) Original (b) Corrected (c) Ground Truth

» Inference time
| Method | Tme | Hardware
DiffSfM ~ 8 minutes i7-7700K CPU

(SOTA classic-model-based)

DeepUnrollNet

TN N [ 0.34 seconds NVIDIA GeForce 2080Ti GPU

SUNet (Ours) 0.21 seconds NVIDIA GeForce 2080Ti GPU

640X 480 image resolution



2.2. SUNet: Symmetric Undistortion Network for RS Correction
I

O

>

Conclusions

Recovering GS image corresponding to the exposure time of the first scanline is of both
theoretical interest and great practical importance, such as multi-sensor fusion, computational
photography, autonomous driving, etc.

The observation that the first and second RS images have different contributions to different
regions of the target GS image is fundamental and helpful. And the idea of promoting this
property through a symmetry consistency constraint is reasonable.

A distinct advantage of the method is the use of symmetric network architecture to improve
the efficient aggregation of contextual information.

The context-aware cost volume we construct can effectively promote contextual consistency
at different scales.

Extensive experiments demonstrate that our approach performs favorably against the state-of-
the-art methods in both GS image restoration and inference efficiency.

Maybe applicable to other frame interpolation tasks.




3. Rolling Shutter Temporal Super-Resolution

-
O Background:

> Rolling shutter images can be viewed as the result of the row-wise combination of global
shutter images captured by a virtual moving GS camera over the period of camera readout time.

RS
Inversion

High framerate GS video
Two consecutive RS frames



3. Rolling Shutter Temporal Super-Resolution
I 4@

O
>

Objective:

Invert the rolling shutter imaging mechanism, i.e., RS temporal super-resolution (RSSR),
is extremely challenging, e.g., recovering 960 GS images from two 480-height RS images,
which is far from being solved in the deep learning framework.

Different from estimating the undistortion flow at a specific time in RS correction, here it is
necessary to estimate the undistortion flow at any time. Therefore, it is crucial to build
connections between them.

Rolling shutter imaging mechanism




3. Rolling Shutter Temporal Super-Resolution

-
O Challenges:
>

Beyond eliminating the geometric RS distortion in the two-view RS correction task, we have to
output a high framerate GS image sequence as well as ensure its temporal smoothness.

> Different from the slight and controllable pixel displacement in the GS video interpolation task,
which is located inside its optical flow, the pixel displacement when correcting the RS image may
exceed its local neighborhood defined by its optical flow.

-------------

< N
! : ! - _ H . 1
! opu(_:a] flow > "7 learned " fine-tuned Op“?al flow |
| estimator I - - : estimator 1
________________________________
a
| |

softmax splatting
(subject 1 Z)

image synthesis
network
feature pyramid |
extractor

feature pyramid
extractor

softmax splatting
(subject to Z)

GS image 0 GS image 1 GS image 2 Iﬂw

SOTA two-view RS correction method [Liu et al, CVPR’20]: SOTA GS video interpolation method [Niklaus et al, CVPR’20]:
only one reliable GS image can be recovered. is incapable of reducing the RS artifacts.



3. Rolling Shutter Temporal Super-Resolution
I

Inverting a Rolling Shutter Camera: Bring
Rolling Shutter Images to High Framerate
Global Shutter Video

Bin Fan, Yuchao Dai*

ICCV 2021



3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video .=

A

Contributions:

We identify and establish a detailed proof of the scanline-dependent nature of the bidirectional
undistortion flows, which is essential for understanding the intrinsic geometrical properties of RS
correction problem.

From the theoretical perspective, we propose the first geometry-aware learning-based RSSR
solution for latent GS video sequence extraction from two consecutive RS images, which brings
RS images alive.

Our approach not only outperforms the state-of-the-art methods in both RS effect removal and
inference efficiency, but also can produce a smooth and continuous GS video.

Input RS image 1 Input RS image 2 Output GS video



-
u Differential RS Geometry

» GS-aware forward warping: » RS-aware warping:
Av A (Optical flow between two consecutive RS images)
f= 7+Bw=?r(v,w,x,Z:f), (1)
f-u _ ’.«‘T-!_,.(V:W,X,Z, f)
where [ £, } =« [ mo(vow.x. Z, f) |
A= -f 0 =z :|
- _ here .. . .
0 =y > Where Lo constant velocity
i P o1 P :
B 2 (7)) v | h motion model]
|(1+) -7

a is the RS-aware interpolation factor, depending on the corresponding

Here, (x,y) is the normalized image coordinate and f de- _ } ) _
RS optical flow; Y is the readout time ratio.

notes the focal length.

* Note that we prove that Y is positive for forward RS optical
flow (i.e. from frame 1 to frame 2) and Y is negative for
backward RS optical flow (i.e. from frame 2 to frame 1) .

[1] Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.



3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video —

u Undistortion Flow vs Optical Flow

> Bidirectional RS undistortion flow:

u, Ty (viw.x, Z, f) |’
where
g s —K) » Mutual conversion between varying RS undistortion flows
| L that correspond to different scanlines:
which delivers each RS pixel x on k-th scanline to its GS canvas
defined by the pose corresponding to s-th scanline. u;z Sog— kK | ul
[ur:ﬂ ] =51-H[u::1 ]

Assuming that two GS images corresponding to S;-th scanline and
S,-th scanline are to be restored.



u Undistortion Flow vs Optical Flow
> Bidirectional RS undistortion flow: > Bidirectional RS optical flow: (By eliminating if )

W | _ g Tu(V,w. X, Z, )

1, — ! Ty (Vs W, X, Z? f) ’ fu — ],1 ?T'”-

f, N h — vy, Ty
where
]‘; — T(S - h’)
h
which delivers each RS pixel x on k-th scanline to its GS canvas which models the transformation of RS pixel x between two
defined by the pose corresponding to s-th scanline. consecutive RS frames.
\ J
|

» Connection between the undistortion flow and optical flow:

e ]=e[ B ]

where | » Note that we prove ¢ € (—1,7)
‘ v Correlation factc>

when correcting an RS image to
its middle-scanline GS image.




3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video

Undistortion Flow vs Optical Flow

The undistortion flows exhibit a more significant scanline dependence.

The undistortion flows near the target scanline appear as smaller warping displacement values;

The undistortion flows corresponding to pixels that are opposite to the target scanline show different

vV V]

warping displacement directions.

Undistorted Flow

Undistorted Flow Undistorted Flow
(last scanline)

Optical Flow (first scanline) (middle scanline)

R e

e T T S S S S S

O T TR

R e e . S S N S S S S S

~~~~~~~~~~~~~~~~~

SR O

Connection

Interconversion



3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video =

u Constant Velocity Propagation vs. Constant Acceleration Propagation:

» Undistortion flow (Constant Velocity Model):
» Mutual conversion between varying undistortion flows that

[ Uy ] 3 [ Tu(V,w, X, Z, f) correspond to different scanlines (Constant Velocity Model):
Uy N ﬂ—v(vzwzxw Zu f) ’
where [ uz ] _ Sy —K [ us! ]

~ h

Assuming that two GS images corresponding to S;-th scanline and
S,-th scanline are to be restored.

P

> Undistortion flow (Constant Acceleration Model): » Mutual conversion between varying undistortion flows that
correspond to different scanlines (Constant Acceleration Model):

which delivers each RS pixel x on k-th scanline to its GS canvas
defined by the pose corresponding to s-th scanline.

g Yis — k) - 2h + k(s — &) i
b= T hik + 2) [ us? ]  (s2—rK)(2h Hkv{(s2 — K)) [ ! ]

u®? | (s; —k)(2h —I—:_Fs:_']fisl —k)) | ull

(L

Fan B, Dai Y, Li H. Rolling shutter inversion: bring rolling shutter images to high framerate global shutter video. IEEE TPAMI 2022.



3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video =

-
Pipeline of our RSSR method:

Firstly, we estimate the bidirectional optical flows by using the classic PWC-Net.

Secondly, we use a UNet network to learn the middle-scanline correlation map such that the
middle-scanline undistortion flows can be inferred. Meanwhile, undistortion flows for any scanline
can be associated and propagated explicitly.

> Finally, the forward warping is employed to warp RS images, yielding a GS video sequence
corresponding to arbitrary scanlines.

vV V]

— — — — — — — — — — — —

e Only the middle-scanline GS images are needed for supervision.

Ul—rm = Cl—;m ® (F1—>2 + &Fl—ﬂ) .
Usym = CZ—;m ® (FQ—H + &FE—H) .

f
|
: | 1
1 1 1
| [ T i I | |
: | U, | : i
e I
| m I e e |
1 1 g
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3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video,
I @4

O Experiments

> Quantitative Results

Table 1: Quantitative comparisons on recovering GS images corresponding to the first scanline of the second RS frame. The numbers
in red and blue represent the best and second-best performance. Note that we cannot benchmark the Fastec-RS dataset due to its lack of
training ground truth. Regardless of the black edges of corrected images, our approach performs favorably against other methods.

PSNRT SSIMT LPIPS]

First scanline: Method CRM  CR R CR IR CR R
DeepUnrollNet [ 1 5] 26.90 26.46 26.52 0.81 0.79 0.0703 0.1222
DiffHomo [*7] 19.60 18.94 1%.68 0.61 0.61 0.1798 0.2220
Dift STM-PWCNer [ 26] 19.53 18.62 18.59 0.69 .63 0.2042 0.2416
Diftf SEIM-RAFT [ *0] 24.20 21.28 20,14 0.78 0.70 0.1322 0.1789
RSSR (Ours) 3017 2478 2126 087 078 0.0695  0.1424

Table 3: Quantitative comparisons of the performance between our approach and DeepUnrollNet [] in recovering GS images correspond-
ing to the middle scanline of the second RS frame. Note that, in other chapters and the main manuscript, all competing methods refer to
the first scanline of the second RS frame.

Middle scanline: ethod PSNRT SSIMT LPIPS]
CRM CR IR CR R CR FR
DeepUnroliNet [1] 2786 27.54 27.02 0829 0828 00555 0.0791

ES5R (Ours) 2936 26,57 25.01 0.900 0.834 0.0553 00817




O Experiments

> Qualitative Results

Inputs (Overlay) DeepUnrolINet RSSR (Ours)



O Experiments

» Generating high framerate GS videos (synthetic datalll)

Input RS Frame 1 Input RS Frame 2 Our RSSR Result (Cropped)
[1] Liu P, Cui Z, Larsson V, et al. Deep shutter unrolling network. CVPR 2020.



O Experiments

» Generating high framerate GS videos (Real datal*! by an RS camera mounted on a car)

=TI — e \
Input RS Frame 1 Input RS Frame 2 Our RSSR Result (Cropped)
[1] Cao M, Zhong Z, Wang J, et al. Learning adaptive warping for real-world rolling shutter correction. CVPR 2022.




3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video

u Experiments

» Generating high framerate GS videos (real datall)

Input RS Frame 1 Input RS Frame 2 Our RSSR Result (Cropped)
[1] Zhuang B, Cheong L F, Hee Lee G. Rolling-shutter-aware differential sfm and image rectification. ICCV 2017.




O Experiments

» Comparison with SOTA video frame interpolation methods

Inputs (Overlay) BMBC DAIN RSSR (Ours)

Figure 3: Visual results against video frame interpolation algorithms (BMBC [6] and DAIN [!]) to generate an interme-
diate frame corresponding to the intermediate time of two consecutive RS frames. Only our proposed RSSR method can

successfully remove RS artifacts.



3.1. Inverting a RS Camera: Bring RS Images to High Framerate GS Video =

O Experiments

» Comparison with two-stage method (baseline) » Inference times

Given three consecutive RS images, we first obtain two corrected GS images in sequence
by using DeepUnrolINet [CVPR’20], and then interpolate the GS image corresponding to
the first scanline of the third RS image using DAIN [CVPR’19].

| Methods | Times | Outputs _

DeepUnrollNet

(SOTA) 0.34s 1 GS image
Two-stage method 5 min 960 GS images
0.12s 2 GS images
RSSR (Ours)

1.8s 960 GS images

Test on an NVIDIA GeForce RTX 2080Ti GPU
with 640X 480 image resolution

Inputs (Overlay) Two-stage RSSR (Ours) GT

Figure 4: Visual results against the two-stage approach: perform RS correction first, then perform video frame interpolation.



| Conclusions

> We have revealed the intrinsic geometrical properties of RS correction problem and made
three contributions: 1) formulating the bidirectional RS undistortion flows under the constant
velocity motion model, 2) building the connection between the RS undistortion flow and
optical flow via a scaling operation, and 3) developing a mutual conversion scheme between
varying RS undistortion flows that correspond to different scanlines.

> We have proposed the first geometry-aware learning-based RSSR solution for latent GS video
sequence extraction from two consecutive RS images, which brings RS images alive.

> Our rolling shutter temporal super-resolution pipeline marries the advantage of RS geometric
reasoning and modern deep learning-enabled computer vision, which can effectively explore
the underlying spatio-temporal geometric relationships.

> Extensive experiments demonstrate that our approach achieves joint RS correction and
temporal super-resolution, outperforming state-of-the-art methods.

> Our preliminary implementation can very efficiently generate 960 GS images with 640X480
resolution in 1.8 seconds on an NVIDIA 2080Ti GPU.



3. Rolling Shutter Temporal Super-Resolution
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Context-Aware Video Reconstruction
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3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
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O Formulation:
Inspired by the task of video frame interpolation, we re-define the RS temporal super-resolution problem
in the temporal dimension.

> Given two RS frames at adjacent times 0 and 1, we aim to synthesize an intermediate GS frame
corresponding to any time t, where 0 <t < 1.
> In particular, the middle scanlines of the two RS images correspond to time instances 0 and 1,

respectively.

RS Frame 0 RS Frame 1

Row 1 |

&

Ré‘adout 'ﬁme

Y.

Exposure Time




3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
N

u Motivation:
The geometry-aware RS inversion proposed in ICCV 2021 warps RS frames directly.

RS frame 0
Hence, it suffers from two limitations:

v" Masses of black holes. This is a common issue for warping-based methods due to the occlusion. To maintain
visual consistency, a cropping operatlon is used to dlscard the holes, but may degrade the visual experience.

. d d 4

v Noticeable object-specific motion artifacts. When recording dynamic scenes, the moving objects violate the
assumption of constant velocity motion, resulting in severe motion artifacts.

——

—



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras

u Pipeline of our CVR method:

Motion interpretation module, including a network-based bilateral motion field estimator (NBMF)
or an approximated bilateral motion field estimator (ABMF).

2. GS frame synthesis module, including a motion enhancement layer (MEL) and a contextual

aggregation layer (CAL).
( GS frame cg_[n_didate | e ’
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Motion Interpretation Module
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3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
N

u Details of motion interpretation module:
> The bilateral motion field can be generated by scaling the regular optical flow field, i.e.,

Upoi(x) = Cose(x) - Fos1(x)
Uioi(x) = Cio4(x) - Fioo0(x)

> The bilateral correction map was formulated under the constant camera motion in ICCV 2021, which
can be learned by an encoder-decoder network.

(t —79)(h —my)

CD—}t(X) = h,
 —t)(h+ 7
Cioi(x) = ( ).é v) oo8) e
0.06 :
> In this work, we further propose its approximated version i
neglecting the parallax effects, which is independent of = 004! | .
image content and can be pre-defined. |
0.02 ne —
Co—t(x) =t — 70 R =— — =5
Cl_z,t(x)z’?'l—t OF - -

Carla-RS Fastec-RS



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras

O Details of motion interpretation module:
1. Bidirectional optical flow estimator.
2. Bilateral motion field estimator (NBMF or ABMF) at arbitrary time t&[0,1].

* Network-based BMF (NBMF)

|Optica| flows Correction maps NBMF
* Approximated BMF (ABMF)

|Optical flows Correction maps ABME




3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
I @4

O Details of GS frame synthesis module:
> BMF residuals are estimated to improve the final flow quality in boundaries and unsmooth regions.

ﬁﬂ—}t = Uy + -’ﬁUﬂ—}t i
Uit = Ui + AU, i

|IAUg0.5]|5 |AU150.5]5

> Bilateral occlusion masks are generated to guide GS frame synthesis to handle occlusions.

ig _ (1 — t)oﬂ%iig—rt + tol—?'tig—ht_

" (1 =1)Op—t +10O1 4




3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
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O Loss functions:

> Reconstruction loss: £, == (I} -1

> Perceptual loss: Z Hc;s (19) Is’t)H1

> Contextual consistency loss: L. = %i(h%t 19*| +H1Hf e i |1)
> Total variation loss: £, = % i (”vﬁo%i S+ |‘Vﬁ1_,ti 2)

i=1

Note that we use the ground-truth GS images corresponding to times 0.0, 0.5 and 1.0 to supervise the network training.



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
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O Experiments

> Quantitative results of RS effect removal

Table 1. Quantitative comparisons on recovering GS images at time step ¢ = 0.5. The numbers in red and blue represent the best and
second-best performance. Our method is far superior to baseline methods and the proposed ABMF model is effective as an initialization.

Method Runtime PSNRT (dB) SSIM*T LPIPS.|
(seconds) CRM CR FR CR FR CR FR
DiffStM [62] 467 24.20 21.28 20.14 0.775 0.701 0.1322 0.1789
DiffHomo [63] 424 19.60 18.94 18.68 0.606 0.609 0.1798 0.2229
T| me t:OS DeepUnrollNet [24] 0.34 26.90 26.46 26.52 0.807 0.792 0.0703 0.1222
SUNet [10] 0.21 29.28 29.18 28.34 0.850 0.837 0.0658 0.1205
RSSR* 0.09 28.20 23.86 21.02 0.839 0.768 0.0764 0.1866
RSSR [Y] 0.12 30.17 24.78 21.23 0.867 0.776 0.0695 0.1659
CVR* (Qurs) 0.12 31.82 31.60 28.62 0.927 0.845 0.0372 0.1117
CVR (Ours) 0.14 32.02 31.74 28.72 0.929 0.847 0.0368 0.1107

*: applying our proposed approximated bilateral motion field (ABMF) model.

Table Al. Quantitative comparisons on recovering GS images at time step £ = 1. The numbers in red and blue represent the best and
second-best performance. In addition to the SOTA quantification performance for GS image recovery at time { = 0.5, our method also
obtains almost consistent best metrics at time ¢ = 1. Note that not only these, high-quality GS video frames corresponding to any time
t € [0, 1] can be accurately estimated by our method.

_ Method PSNRT (dB) SSIMT LPIPS]

Time t=1.0: CRM CR FR CR FR CR FR
DeepUnrollNet [21] 2786 27.54  27.02 0829  0.828 0.0555  0.0791
RSCD [61] - - 24.84 - 0.778 - 0.1070
RSSR [Y] 2936 2657  24.89 0900  0.824 0.0553  0.1109
CVR* (Ours) 2828 2819 26,58 0912 0.833 0.0444  0.1014
CVR (Ours) 2941 2919 2667 0915  0.838 0.0403  0.1011

*: applying our proposed approximated bilateral motion field (ABMF) model.
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O Experiments

> Quantitative results of RS effect removal

SUNet (ICCV 2021)

| 7517

'

RSSR (ICCV 2021) CVR (Ours) Ground-truth



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras

O Experiments

> Effectiveness of our ABMF model

Input RS (Overlayed) RSSR* RSSR [V] CVR* (Ours) CVR (Ours) Ground-truth



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras

u Experiments

» Effectiveness of our occlusion reasoning layer

e

O, ~ =~ CVR (Ours)

t=0

t=0.5

— = CVR (Ours)

1

=~ RS1
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— — CVR (Ours)



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
I @4

O Experiments

» Effectiveness of our motion enhancement layer

v The brighter a pixel, the bigger the motion enhancement.

v Our CVR effectively enhances ambiguous motion boundaries for more accurate contextual alignment.



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
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O Experiments

» Comparisons with video frame interpolation methods and cascaded methods

Input RS (Overlay) BMBC DAIN Cascaded method CVR (Ours) Ground-truth



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras

u Experiments

» Generating high-quality GS videos (Carla-RS dataset)

e 2

)

Y

Input RS Frames RSSR (ICCV 2021) CVR* (Ours) CVR (Qurs)



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
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O Experiments

» Generating high-quality GS videos (Fastec-RS dataset)

Input RS Frames RSSR (ICCV 2021) CVR* (Ours) CVR (QOurs)
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O Experiments

» Generalizability on real data
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3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras

O Experiments

» Generalizability on real data

Input RS Frames RSSR (ICCV 2021) CVR* (Ours) CVR (Qurs)



3.2. Context-Aware Video Reconstruction for Rolling Shutter Cameras
N

O

>

Conclusions

We re-define the RS temporal super-resolution problem in the temporal dimension, which is

beneficial for the temporally tractable joint RS correction and frame interpolation of RS video.

We propose a simple yet effective bilateral motion field approximation model, which serves as a

reliable initialization for GS frame refinement.

We develop a stable and efficient context-aware GS video reconstruction framework, which can

reason about complex occlusions, motion patterns specific to objects, and temporal abstractions.

We demonstrate that the proposed method is more effective and compact than the SOTA

approaches.



4. Public Datasets

-
u Synthetic dataset:

> Carla-RS: It is generated from a virtual 3D environment using the Carla simulator, involving general 6-DoF
camera motions. There are a training set of 210 sequences and a test set of 40 sequences, and each sequence
consists of 10 consecutive frames. A total of 2500 RS images with a resolution of 640 X 448 pixels are included.

> Fastec-RS: It uses a high-speed GS camera mounted on the ground vehicle to collect high-FPS GS video
sequences at 2400 Hz. Then, the RS image is synthesized by extracting pixels from consecutive GS images row-
by-row and merging them. The training set has 56 sequences and the test set has 20 sequences, each of which
contains 34 consecutive frames. There are 2584 RS image pairs with a resolution of 640X480 pixels.

capture

v" Note that they provide the GS
ground-truth corresponding to

Y i § =
& the first and middle scanlines of
capture synthesize the RS image.
s — Synihee
ﬁ Ty

High frame rate GS cameras High frame rate GS images Synthesized RS images

Liu P, Cui Z, Larsson V, et al. Deep shutter unrolling network. CVPR 2020. (https://github.com/ethliup/DeepUnroliNet)




4. Public Datasets
... a4

n Real-world dataset:

BS-RSC: It is a realistic benchmark dataset, collected by a well-designed beam-splitter acquisition system in the
dynamic urban environment. There are 50, 16, and 15 sequences for training (2500 image pairs), validation
(800 image pairs), and testing (750 image pairs), respectively. The image resolution is 1024 X 768 pixels.

A\

Beam RS
Splitter Camera

| -z

Time

SR
HEN

Ims

Lens

RS Image
Rows

U ND

Filter

Rolling shutter

GS Image
Rows

(a) (b)

Figure 4. The designed beam-splitter acquisition system for real-
world RSC dataset construction. (a) structure of the designed
beam-splitter acquisition system. (b) exposure scheme of the GS
and RS camera. The acquisition system can capture the GS frame
at the intermediate exposure time of RS frame.

BS-RSC Fastec-RS

Global shutter

Figure 5. Left: The real world RS-GS example in the collected
v _ : BS-RSC dataset. Right: The synthesized RS-GS example in the
Note that Only the GS ground truth correspondlng to the Fastec-RS dataset [20]. We see that our real RS frame is more

middle scanline of the RS image is provided 5 natural, and there are much artifacts in the synthesized RS frames.

Cao M, Zhong Z, Wang J, et al. Learning adaptive warping for real-world rolling shutter correction. CVPR 2022. (https://github.com/ljzycmd/BSRSC)




4. Public Datasets
I

n Real-world dataset:

BS-RSCD: As a real dataset with egomotion and object-motion, it is collected using a well-designed beam-
splitter acquisition system. It can be used for simultaneous RS effect removal and deblurring tasks. The camera
frame rate is 15 Hz. There are 50 sequences for training, 15 sequences for validation, and 15 sequences for
testing. Each sequence has 50 video frames, i.e., 4000 image pairs are recorded in total. The image resolution is

640 X 480 pixels.

A\

Relay Lens Beam Splitter Z £ 16ms time
7 E : I : :
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GS Camera

(a) (b) (c)

Figure 2: Beam-splitter acquisition system. (a) shows real system used to collect the dataset; (b) is system schematic
diagram; (c) is exposure scheme of the system.

v" Note that only the GS ground-truth corresponding to the

middle scanline of the RS image is provided. (¢} Realisticamput (DGT

Zhong Z, Zheng Y, Sato |. Towards rolling shutter correction and deblurring in dynamic scenes. CVPR 2021. (https://github.com/zzh-tech/RSCD)




Conclusion
T

> We introduce the rolling shutter correction method, mainly consisting of a dedistortion flow
estimator and a GS image decoder.

> We introduce the RS temporal super-resolution method to reverse the rolling shutter imaging

mechanism to generate a high-framerate and high-quality GS video.

> We introduce the RS dataset to enable efficient training of the above methods.
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Further Direction and Discussion
I

>

Lighter and more efficient network models. Existing network architectures stack a large number of 2D convolutional
modules to essentially achieve image-to-image translation, and thus are not yet capable of real-time GS image recovery,
especially on low-power mobile devices. In addition, limited by the low resolution of the current training dataset, it will be a
challenge to design lighter network models for high-resolution RS images (e.g. 4K video). As a result, designing more efficient
network models to accelerate the inference will be crucial for real-time computer vision applications, such as visual SLAM.




Further Direction and Discussion
I

>

GS mechanism

RS mechanism

Improve the generalization ability of the model. Since the RS image in the current dataset has a fixed readout time ratio,
this may lead to poor generalization of the trained model to third-party RS cameras with significantly different readout time
ratios. A straightforward approach is to enhance the diversity of the training data. However, there is little research on this topic
and further research is needed.
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Further Direction and Discussion
... a4

> Implement RS image correction together with other data/tasks. Currently, the performance of RS correction is
improved by combining it with event camera, global reset, deblurring, etc. A future trend of data-driven models will be to
associate other data types (e.g. IMU, depth camera, etc.) or other low-level image processing tasks (e.g. spatial super-
resolution, spatio-temporal super-resolution, image denoising, radial distortion removal, etc.).

1. Zhou X, Duan P, Ma Yy, et al. EvUnroll: Neuromorphic Events Based Rolling Shutter Image Correction. CVPR, 2022.

2. WangZ, Ji X, Huang J B, et al. Neural Global Shutter: Learn to Restore Video from a Rolling Shutter Camera with Global Reset Feature.
CVPR, 2022.

Related

Papers 3. ZhongZ, Zheng, Sato I. Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes. CVPR, 2021.
4. Mo J, Islam M J, Sattar J. IMU-Assisted Learning of Single-View Rolling Shutter Correction. Conference on Robot Learning, 2022.

5. Tourani S, Mittal S, Nagariya A, et al. Rolling Shutter and Motion Blur Removal for Depth Cameras. ICRA, 2016.




Further Direction and Discussion

> Generate more realistic and multi-instant training datasets. The current datasets either use a beam-splitter
acquisition system to obtain ground truth GS images of real scenes, or simulate RS images by stitching row-by-row with high
framerate GS videos. However, the former only can capture one GS image corresponding to a single instant, which is severely
insufficient for the RS temporal super-resolution task; the latter tends to produce striping artifacts. To unleash the potential of
deep learning methods, it is necessary to generate large-scale realistic RS datasets with more exposure instants, more diverse

scenes and more dynamic objects.
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Figure 2: Beam-splitter acquisition system. (a) shows real system used to collect the dataset; (b) is system schematic
diagram; (c) is exposure scheme of the system.
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