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Abstract

Recently, the task of Video Frame Prediction (VFP), which
predicts future video frames from previous ones through ex-
trapolation, has made remarkable progress. However, the per-
formance of existing VFP methods is still far from satisfac-
tory due to the fixed framerate video used: 1) they have dif-
ficulties in handling complex dynamic scenes; 2) they cannot
predict future frames with flexible prediction time intervals.
The event cameras can record the intensity changes asyn-
chronously with a very high temporal resolution, which pro-
vides rich dynamic information about the observed scenes. In
this paper, we propose to predict video frames from a single
image and the following events, which can not only handle
complex dynamic scenes but also predict future frames with
flexible prediction time intervals. First, we introduce a sym-
metrical cross-modal attention augmentation module to en-
hance the complementary information between images and
events. Second, we propose to jointly achieve optical flow
estimation and frame generation by combining the motion
information of events and the semantic information of the
image, then inpainting the holes produced by forward warp-
ing to obtain an ideal prediction frame. Based on these, we
propose a lightweight pyramidal coarse-to-fine model that
can predict a 720P frame within 25 ms. Extensive exper-
iments show that our proposed model significantly outper-
forms the state-of-the-art frame-based and event-based VFP
methods and has the fastest runtime. Code is available at
https://npucvr.github.io/VFPSIE.

Introduction
Video frame prediction (VFP) aims to predict future frames
from previous frames, which has broad applications in au-
tonomous driving, robotics planning and weather forecast-
ing. Existing VFP methods usually take previous image se-
quences as input to predict a sequence of future frames
with the same framerate as the inputs (simplified diagram in
Fig. 1). By exploiting various network architectures, the per-
formance of VFP has been significantly improved. However,
due to the limitations of frame-based cameras in capturing
complex scenes, it is still challenging by only exploiting
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(a) Frame Interpolation (b) Event-based Frame Interpolation

(c) Frame Prediction (d) Event-based Frame Prediction

Figure 1: Differences between VFI, event-based VFI,
VFP and event-based VFP. VFI methods require the image
(and events) after the target time t, while image-based VFP
is subject to the limited complexity of motion expressed
in fixed frame rate inputs. Event-based VFP can solve the
above problems, and this paper focuses on the minimal setup
of combining a single frame with the following events.

the previous frames. In Fig. 4 and Fig. 5, even the state-of-
the-art VFP methods, their performances deteriorate quickly
as the motion complexity increases. This is mainly due to
the fixed framerate inputs, which limit the ability to cap-
ture complex dynamics beyond the sampling frequency. An-
other major issue is that they cannot predict future frames at
flexible time intervals, i.e., consecutive in-between frames or
across multiple frames. These factors limit the performance
and real-world applications of existing VFP methods.

The event camera, as a new kind of bio-inspired sen-
sor, can capture the asynchronous brightness change of each
pixel. As the event camera captures high-speed motion with
a low data bandwidth and a high temporal resolution with
millisecond accuracy, it provides critical and complemen-
tary information to images and is widely used in motion es-
timation (Ding et al. 2022; Wan et al. 2023), object track-
ing (Wang et al. 2023) and etc. In this paper, we investigate a
new and minimal setup for event-enhanced video frame pre-
diction, where we predict the next frames from a single RGB
image (providing contextual information) and the following
events (providing rich motion information).

Apparently, this task is closely related to video frame in-
terpolation (VFI) with events, where the intermediate frames



are interpolated by exploiting two frames and the events in-
between. In Fig. 1, subject to the interpolation formulation,
these methods require image and event data after time t to
generate the frame at time t. This violates the causality con-
straint in frame generation and limits their applications in
any practical systems. With this precedent of successfully
introducing events to VFI, we believe that combining events
also has a significant effect on improving the usability of
VFP in complex dynamic scenarios.

In this paper, we propose a lightweight network that can
predict a 720P frame within 25ms on an RTX2080Ti GPU.
We first use two respective encoders to extract pyramid fea-
tures from the input reference image and event representa-
tion. To complementarily utilize the characteristics of image
and event data, we design a symmetrical cross-modal atten-
tion module to augment these two features. Then we refine
the synthesized feature and optical flow in a coarse-to-fine
joint estimation way. To resolve the holes arising from for-
ward warping, we present an inpainting module that can re-
pair the holes without bringing lots of extra computation.
Finally, we adopt a weighted fusion to output the final frame
prediction from the synthesized and warped frames. Thanks
to the sparse events that can be divided into multiple time
segments, the training data we can use covers various motion
ranges and time intervals. Therefore, by adjusting the end
times of input events, our model can predict high-framerate
frames as well as frames for a long time, whereas the frame-
based VFP models cannot because their predicted framer-
ates need to be consistent with the input framerates. We con-
duct experiments on both synthetic and real datasets, and the
PSNR is improved by over 3.5dB on GoPro compared to the
state-of-the-art frame-based and event-based VFP methods,
which demonstrates the effectiveness of our model in solv-
ing the VFP problem.

Our main contributions are summarized as follows:
1) We introduce a minimal practical configuration to in-

troduce events for the VFP tasks, i.e., predicting future
frames from a single image and events.

2) We propose a lightweight model with symmetrical cross-
attention augmentation and hole inpainting module,
which can predict a future frame from a single image and
events within real-time requirements.

3) Experiments on both synthetic and real-captured datasets
prove the effectiveness and efficiency of our approach in
predicting flexible future video frames.

Related Work
Video Frame Prediction
VFP aims to predict future frames from past frames. Ex-
isting works have exploited different architectures such as
CNN (Liu et al. 2017; Huo et al. 2020; Choi and Baji 2021),
RNN (Finn, Goodfellow, and Levine 2016; Fan, Zhu, and
Yang 2019; Wang et al. 2022), GAN (Liang et al. 2017;
Kwon and Park 2019; Chang et al. 2022) and etc. Due to
future motion uncertainty, some studies obtain predictions
by estimating the distribution of future pixels, optical flow
and latent space (Choi and Baji 2021; Liu et al. 2021; Chang
et al. 2022). Meanwhile, some studies (Villegas et al. 2017;

Gao et al. 2019) decompose the scenes into two parts to build
a more accurate motion model. Despite this progress, frame-
only methods still cannot handle complicated scenes for lack
of motion information. Thus semantic map (Wu et al. 2020;
Bei, Yang, and Soatto 2021) and depth map (Qi et al. 2019)
resort to incorporating additional data to alleviate the diffi-
culty. The event-enhanced solution, EDI (Pan et al. 2022),
designed for simultaneous deblurring and video reconstruc-
tion by an optimization algorithm, has explained the signifi-
cance of combining a single image with the following events
for frame prediction, but they are time-consuming and vul-
nerable to noise.

Image-based Frame Interpolation
Image-based VFI is to increase the temporal resolution
of frame sequences. It can be simply divided into two
categories: namely kernel-based (Niklaus, Mai, and Liu
2017a,b; Choi et al. 2020; Khalifeh et al. 2022; Shi et al.
2022) and flow-based (Jiang et al. 2018; Liu et al. 2019;
Kong et al. 2022; Hu et al. 2022; Huang et al. 2022) ap-
proachs. Kernel-based methods generate latent pixels for the
interpolated frames by local convolutions and can only han-
dle the limited motion range. The flow-based VFI produces
the intermediate frames by estimating the optical flow and
can adapt to various motion ranges. Since flow-based meth-
ods rely on linear motion assumptions, most of them cannot
model complex scenes accurately. Although quadratic (Xu
et al. 2019; Dutta, Subramaniam, and Mittal 2022) and cu-
bic (Chi et al. 2020) motion models are proposed to address
these problems, these methods still cannot solve the perfor-
mance degradation when facing difficult situations.

Event-based Frame Interpolation
Event-based VFI utilizes the information of the image and
event stream to generate the intermediate frames. Existing
methods can be divided into kernel-based (Lin et al. 2020;
Zou et al. 2021; Yu et al. 2021; Zhang and Yu 2022; Kılıç,
Akman, and Alatan 2023), flow-based (He et al. 2022; Wu
et al. 2022) and composite methods (Tulyakov et al. 2021,
2022). Kernel-based methods generate the latent frames by
convolution network, while flow-based ones produce the in-
termediate frames by estimating optical flow. Composite
methods are a mixture of these two methods and compro-
mise the merits of two of these methods. Despite the sig-
nificant performance, the event-based VFI suffers from the
same problem as the image-based VFI, that is, it still re-
quires future frames relative to the generated frames as in-
put, which leads to significant latency in practice.

Method
Given a single input image It0 at time t0 and the fol-
lowing events Et0→tn = {ei}M = {xi, yi, ti, pi}M , i ∈
[1,M ], ti ∈ [t0, tn] with position (xi, yi) at image plane,
brightness change timestamp ti and polarity pi, M is the
number of events, event-based video frame prediction aims
to predict future frames {It1 , It2 , · · · , Itn}

(M−1)
t0<t1<t2<···<tn ,

where n is the number of predicted frames. In this sec-
tion, we introduce our proposed frame prediction model (see
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Figure 2: Overview of our proposed network model. In our framework, we first use two encoders to extract pyramid features
for the image and events. Then we apply a coarse-to-fine joint decoder to get the synthesized feature and optical flow at each
pyramid layer. In the decoder, we utilize Symmetrical Cross-modal Attention to augment both image and event features. We
also introduce Warping and Inpainting Module to repair the holes caused by forward warping and get spatially-aligned image
features. Finally, we adopt Weighted Fusion to output the final frame prediction from the synthesized and warped frames.

Fig. 2) from a single image and events, including event rep-
resentation and feature encoding, symmetrical cross-modal
attention, and joint flow and frame decoder with inpainting.

Event Representation and Feature Encoding
Due to the special space-time format of the event stream,
we need to first convert the origin events Et0→tn to the
event voxel EVt0→tn before inputting it into the subse-
quent models. Following (Zihao Zhu et al. 2018; Rebecq
et al. 2019), we divide {ei}M into B temporal bins and sum
the normalized timestamps for each pixel position (x, y) ∈
{(xi, yi)}M in each temporal bin b ∈ [1, B] as follows:

E(x, y, b)=

M∑
i=1

pi max

(
0,1−

∣∣∣∣b− (B−1)
ti−t0
t0−tn

∣∣∣∣). (1)

To reduce the computational cost, we apply two
lightweight feature encoders to extract the pyramid features
for the image and events separately. Each encoder consists
of residual convolution blocks, which comprise two convo-
lutions and the PReLU (He et al. 2015) activation. The chan-
nel number of the pyramid features are set to 24, 36, 54 and
72 from the shallow to deep pyramid layer.

Symmetrical Cross-modal Attention
Due to special perception mechanism, event stream lacks the
competence to capture the motion in the areas where the

brightness change is implicit. By contrast, image can pro-
vide dense and rich context information, but cannot encode
motion information. To compensate for the disadvantages of
these two data sources, we introduce a cross-modal atten-
tion feature augmentation module to symmetrically enhance
the context and motion feature. This module is an adapta-
tion of self-attention(Vaswani et al. 2017), which includes
two symmetrical attention enhancement branches: Image-
to-Event (I2E) attention and Event-to-Image (E2I) attention.
Note that, unlike the attention fusion in EFNet (Sun et al.
2022) to obtain one fused feature, we aim to augment each
other to get two enhanced features and apply this module
only at the 1st and 4th pyramid layers. As the image and
event features are gradually spatially aligned by the esti-
mated optical flow, the augmented features in the 1st layer
are further augmented by adding them with the original fea-
tures, while the augmented features in the 4th layer are not.

The I2E attention determines the importance matrix of the
image feature by counting the similarity between the image
feature and the event feature. The image feature is enhanced
by multiplying the image feature and the normalized weight
obtained from cross similarity:

Attention(QE ,KI , VI) = VI · softmax

(
QE

TKI√
dk

)
,

(2)
where KI and VI are the keys and values obtained from im-



age feature, QE are the queries extracted from event feature
and

√
dk means the dimension of KE .

The E2I attention obtains the weight of the event feature
by normalizing the similarity matrix between the event fea-
ture and the image feature. We can obtain the augmented
event feature by reweighting the event feature:

Attention(QI ,KE , VE) = VE · softmax

(
QI

TKE√
dk

)
,

(3)
where KE and VE are the keys and values obtained from
event feature, QI are the queries extracted from image fea-
ture and

√
dk means the dimension of KI .

Joint Flow and Frame Decoder with Inpainting
To simplify the procedure and reduce the computational
cost, we apply an integrated decoder to estimate the optical
flow and generate the target frame in a coarse-to-fine man-
ner. Our model includes four pyramid layers. For the bot-
tom layer, namely P4, we input the event and image feature
FI40, FE4

t to symmetrical cross-modal attention and predict
the optical flow f3

t and synthesized frame feature S3
t using

the augmented feature AI40, AE4
t . For the middle layers P 3

and P 2, we first warp the extracted image feature FI l0 to the
target time t and get W l

t . Then we concatenate the warped
feature W l

t , event feature FEl
t and synthesized frame fea-

ture Sl
t and optical flow f l

t from the last layer together as
the input of the decoder. For the top layer P 1, we augment
the event and inpainted feature from the 2nd layer, feed into
the decoder and get optical flow ft and synthesized frame
Ît at the top layer. Then we directly warp the input refer-
ence image I0 to

−→
It . Different from the frame-based VFI

methods that perform a bi-directional check to deal with the
occlusions, our VFP setting has a unique problem in deal-
ing with the holes generated by forward warping. To relieve
this problem, we introduce an efficient hole inpainting mod-
ule to inpaint the warped frame at the top layer and inpaint
the warped feature at the bottom layers. First, we modify the
commonly used CUDA accelerated implementation of for-
ward warping (Niklaus and Liu 2020) to get the occlusion
mask Occ by a fixed threshold. Then we use synthesized
frame feature Sl

t to inpaint the holes:

W l
t (x, y) =

{
Sl
t(x, y) ,Occ(x, y) > 0,

Warp(FI l0, f
l
t)(x, y) ,Occ(x, y) ≤ 0,

(4)
where Warp is the forward warping operator.
Compared with existing methods that design a new module
to inpaint the holes (Gao et al. 2019), our efficient module
can inpaint the holes with the synthesized features at every
pyramid layer without increasing large computational cost.

Although holes in the warped frame
−→
It can be inpainted

by the synthesized frame Ît, the outline of the hole may
be evident and affect the harmony of the final prediction.
In addition, the accuracy of the synthesized frame Ît and
the warped frame

−→
It is different when confronting different

motion scenes. Accordingly, we propose a weighted fusion

Warped frame Inpainted frame Refined frame Ground Truth

Warped frame Inpainted frame Refined frame Ground Truth

Figure 3: Visualization schematics of Inpainting Module
and Fusion Refinement Module.

refinement module, which uses a network to learn an alloca-
tion weight w ∈ [0, 1]. Lastly, we fuse the synthesized frame
Ît and warped frame

−→
It with the weight w to obtain the final

output, i.e., frame prediction:

It = w ·
−→
It + (1− w) · Ît. (5)

Fig. 3 illustrates the visual comparisons of the inpaint-
ing module and the fusion refinement module. The inpaint-
ing module can generate the filling pixels which are con-
sistent with the surrounding area in absence of the subse-
quent frame, while the weighted fusion refinement module
can make the border more accurate and smooth.

Loss Function
To supervise the final predicted frames in training, we first
apply our reconstruction loss, which consists of the Char-
bonnier loss(Charbonnier et al. 1994) LCha, the Census
loss(Meister, Hur, and Roth 2018) LCen, and the LPIPS
loss(Zhang et al. 2018) LLPIPS :

Lrec(It) =LCha(It − Igt) + α1LCen(It − Igt)

+ α2LLPIPS(It − Igt),
(6)

where LCha(x) =
√
x2 + 10−6 and α1 = 1.0, α2 = 1.0.

To ensure the quality of inpainting padding, we also apply
the reconstruction loss to synthesized frames,i.e., Lrec(Ît).

We adopt the pseudo optical flow generated by RAFT
(Teed and Deng 2020) to supervise the optical flow using
the task-oriented flow loss (Kong et al. 2022), which can ad-
just the loss weight dynamically and is defined as follows:

R = e−β∥ft−fp∥2 ,

Lflow =

L−1∑
l=1

(
(f l

t − fp)
2 + ϵ2

) r
2 + ∥f l

t − fp∥,
(7)

where∥.∥ is the L2 norm between estimated optical flow ft
and pseudo optical flow fp, r = R(u, v) is the robustness
weight at position (u, v),ϵ = 10(10r−1)/3 and β = 0.3.

We use the Census loss as feature consistency loss to su-
pervise the synthesized feature as follows:

Lfeat =

L−1∑
l=1

LCen(S
l
t − FI lgt), (8)



Table 1: Performance comparison on the GoPro and HS-ERGB datasets. The results refer to the PSNR/SSIM metrics. * means
inpainting the holes caused by forward warping with the synthesized frames generated by our model.

Method Setting Input GoPro HS-ERGB Model Size Time
7 frames 15 frames 7 frames (MB) (s)

IFRNet Frame
Interpolation

2 Images 29.27/0.92 24.78/0.82 27.35/0.83 19.0 0.038
EVDI 2 Images + Event 25.13/0.75 22.62/0.66 26.10/0.77 1.6 0.200
Time Lens 2 Images + Event 32.66/0.94 29.81/0.90 32.12/0.86 454.0 0.290
E2VID Reconstruction Event 14.46/0.59 - 8.84/0.40 41.0 0.054
HyperE2VID Event 15.37/0.61 - 10.92/0.44 39.0 0.140
DCEIFlow Flow

Estimation
1 Image + Event 26.45/0.92 23.36/0.85 26.29/0.80 28.0 0.130DCEIFlow* 1 Image + Event 29.21/0.93 26.15/0.87 27.87/0.83

OVP
Frame

Prediction

2 Images 26.15/0.89 22.90/0.68 25.47/0.76 33.0 327.860
DMVFN 2 Images 25.48/0.84 21.46/0.73 27.59/0.82 14.0 0.013-0.038
EDI 1 Image + Event 20.11/0.62 18.43/0.55 22.64/0.70 - -
Our model 1 Image + Event 29.73/0.93 27.71/0.89 28.07/0.83 8.3 0.024

where FI lgt means ground-truth feature extracted from the
ground-truth frame Igt using the image encoder.

Based on the above analysis, the final training loss is for-
mulated as:

L = Lrec(It) + λ1Lrec(Ît) + λ2Lflow + λ3Lfeat, (9)
where the weighting parameters are set to λ1 = 1.0, λ2 =
0.5, λ3 = 0.1 in our experiments.

Experiments
Implementation Details
All experiments are conducted with PyTorch. We employ an
AdamW optimizer for 50 epochs training with batch size 4
on two NVIDIA RTX3090 GPUs. The learning rate is de-
cayed from 1×10−4 to 1×10−5 with a cosine learning rate
scheduler. To obtain reliable motion priors, we first pretrain
our model only under the supervision of task-oriented flow
loss in the first 15 epochs, followed by training the model
with full loss in the remaining 35 epochs. To augment the
training data, we make vertical and horizontal flipping with
50% probability and crop 384 × 384 patches randomly. We
simulate events using the Vid2E (Gehrig et al. 2020) sim-
ulator. To enhance the model’s ability to extract temporal
information, we apply two training modes: predict the tar-
get frame using the first frame and predict the target frame
using the last prediction, and switch two modes with 50 %
probability in training.

Our experiments are conducted on both synthetic and real
datasets. PSNR and SSIM are adopted for quantitative eval-
uation. Consistent with the setting of existing event-based
VFI (Tulyakov et al. 2021), we pre-simulate the events of
Vimeo90k septuplet dataset (Xue et al. 2019) and GoPro
dataset (Nah, Hyun Kim, and Mu Lee 2017), then train our
model on Vimeo90k and evaluate on the GoPro test set.
For experiments with real-captured data, we choose the HS-
ERGB dataset (Tulyakov et al. 2021) for evaluation, which
records the data with 1280× 720 resolution at 160 fps and
contains diverse scenes. Besides, we also perform quantita-
tive comparisons on DSEC (Gehrig et al. 2021), a dataset of
events for driving scenarios.

Evaluation with Synthetic Events

We first evaluate our Vimeo90k pretrained model on the Go-
Pro dataset. We conduct a quantitative comparison between
our method and several existing methods with different in-
put settings in Table 1. The methods we compare are state-
of-the-art models with open source code in the fields of 1)
VFI with two images, i.e., IFRNet (Kong et al. 2022), 2) VFI
with two images and events, i.e., Time Lens (Tulyakov et al.
2021), 3) Frame reconstruction with events, i.e., E2VID (Re-
becq et al. 2019), hyperE2VID (Ercan et al. 2023), 4) Flow
estimation with single image and events and get the pre-
dicted frame by warping, i.e., DCEIFlow (Wan, Dai, and
Mao 2022), 5) VFP with two images, i.e., OVP (Hu et al.
2022) and DMVFN (Hu et al. 2023) 6) VFP with single im-
age and events, i.e., EDI (Pan et al. 2022) and our model.
Note that EDI is an optimization method, E2VID and hy-
perE2VID do not provide training codes, DCEIFlow is orig-
inally used to estimate optical flow, thus we use their pub-
licly available parameters and model weights. As shown in
Table 1, we evaluate the above methods for 7 frames and 15
frames respectively, which indicates that the prediction (in-
terpolation) methods predict (interpolate) 7 and 15 following
(intermediate) frames.

Compared with VFI methods, we achieve competitive re-
sults with the premise that only the first frame is input.
Time Lens integrates two frames and events and achieves
better results, which shows that event data is of great help
to solve long-term motion than using only images. Since
we do not use the second frame, our results are inferior
to Time Lens. Nonetheless, compared with IFRNet which
employs two frames to interpolate intermediate frames, our
model achieves a PSNR improvement of up to 2.93dB for
15 frames prediction.

Compared to the VFP methods, they leverage multiple
preceding images to predict the frame, while our model uti-
lizes a single frame along with events. Our method improves
the PSNR by up to 3dB than OVP. Furthermore, we also
compare the visualization results of each model in Fig. 4.
Following OVP, we present the outcomes of the 1st, 3rd and
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Figure 4: Visual comparisons on the GoPro dataset with synthetic events.

Table 2: Performance comparisons on the DSEC dataset
for 3 frames VFP when 1 image and events are input.

Method Setting PSNR(dB) SSIM
DCEIFlow Flow Estimation 25.18 0.81
DCEIFlow* 25.59 0.82
EDI Frame prediction 20.59 0.62
Our model 26.61 0.85

5th frames under the 7-frames evaluation setting. The visual
comparisons show that our model can predict more accurate
frames than the existing image-based VFP methods. Under
the same input setting, our model also shows better perfor-
mance than EDI and DCEIFlow in frame estimation. This
superior performance validates the efficacy of incorporating
events and our proposed framework into VFP.

In addition, we present a comprehensive report of the
model size and runtime for each model in Table 1, where
the runtime is measured by generating a 720P image on a
2080Ti GPU. For EVDI, we assume that its efficacy is infe-
rior to that of our model because its model parameters are
too small to handle intricate dynamic scenarios. Compared
with DCEIFlow, we attribute our model’s superior perfor-
mance and efficiency to the inclusion of the inpainting mod-
ule and the integrated architecture that obviates iterations.
For DMVFN, its runtime ranges from 0.013s to 0.038s for
its dynamic routing mechanism, which takes longer time to
deal with large motion.

In summary, our proposed model exhibits optimal runtime
performance, possessing the second smallest model size in
comparison to competing methods and it stands out as the
only approach satisfying real-time demand.

Table 3: Ablation studies on attention augmentation, flow
estimation, loss function, Ît estimation target and training
mechanism.

Ablations Variations PSNR SSIM

Attention

W/o Attention 28.58 0.91

Augmentation

4th layer 29.32 0.92
3th layer 29.08 0.92
2nd layer 29.15 0.92
1st layer 29.21 0.93
1st and 4th layer 30.80 0.95

Flow

Backward Flow 30.84 0.94

Estimation

Forward Flow 26.14 0.91&W/o Inpainting
Forward Flow 30.80 0.95&W/ Inpainting

Loss
W/o Flow Loss 29.75 0.93

Function
W/o Feature Loss 28.45 0.90
W/o Charbonnier 28.69 0.89
W/o LPIPS 30.52 0.93
Full Losses 30.80 0.95

Ît Estimation Residual Intensity 30.83 0.95
Target Absolute Intensity 30.80 0.95

Training W/o flow pretrain 29.80 0.93
Mechanism W/ flow pretrain 30.80 0.95

Evaluation with Real-captured Events
We conduct experiments on the HS-ERGB dataset in Ta-
ble 1. The reported PSNR and SSIM results are averaged
over the two subsets. Compared to VFI methods, our pro-
posed model only performs inferiorly to Time Lens for lack
of event and image information after t. Compared with VFP
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Figure 5: Visual comparisons on the real-captured HS-ERGB dataset.

methods, our model outperforms the above methods, which
is consistent with the observation on the GoPro and confirms
our model’s superiority. Visual comparisons in Fig. 5 also
verify this observation. In Table 2, we perform quantitative
comparisons of the real-captured DSEC dataset collected in
driving scenarios, which further illustrate our model’s ability
for VFP to generalize to practical complex scenarios.

Ablation Studies
To verify the contribution of each module, we conduct ab-
lations in Table 3 from five aspects: attention augmentation,
flow estimation, loss function, estimation target and train-
ing mechanism. Due to the large data volume of Vimeo90K
dataset, we choose to train these ablation models on the Go-
Pro training set with 100 epochs and evaluate them on the
test set for comparison.
Attention Augmentation. To verify the effectiveness of our
cross-modal attention augmentation, we first remove the at-
tention module, resulting in a decrease of over 2dB in PSNR.
Then we apply it to four pyramid layers respectively. From
Table 3, the attention mechanism contributes most on the
first and fourth layers. Thus we strike a balance between
computation cost and performance and apply the augmen-
tation module to the first and fourth layers.
Flow Estimation. We conduct experiments on flow estima-
tion and the result indicates that the model estimating for-
ward flow with the inpainting module achieves higher SSIM
while the model estimating backward flow has higher PSNR.

Considering the ghost effect introduced by backward warp-
ing, we ultimately select the former approach.
Loss Function. To evaluate the contributions of task-
oriented flow loss, feature loss and reconstruction loss, we
conduct experiments wherein we train the model without
them separately. Table 3 shows that the model’s performance
significantly decreases without any of them.
Estimation Target. Since the initial frame is provided, it
is intuitive to estimate residual intensity instead of absolute
intensity, which is also proved in Table 3. However, for con-
sistency with existing event-based methods, we still use the
absolute intensity as the target of Ît in our model.
Training Mechanism. Since jointly learning optical flow
and frame is a “chicken-and-egg” problem, we employ a
two-stage training approach. This strategy results in a 1.0
dB PSNR performance improvement.

Conclusion
In this paper, we have studied the problem of video frame
prediction (VFP) from a single RGB image and the follow-
ing events. By introducing events to VFP, we can achieve
flexible frame prediction for complex dynamic scenes, where
the temporal interval between the predicted frames can be
long or short. Based on our proposed network, we can sig-
nificantly exceed the performance of existing VFP methods
and meet the requirements of real-time frame prediction. We
believe that event-based VFP, which combines events with
images, is more practical than image-based VFI and VFP.
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